Metamath Proof Explorer


Theorem r19.41dv

Description: A complex deduction form of r19.41v . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypothesis r19.41dv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion r19.41dv ( ( 𝜑𝜒 ) → ∃ 𝑥𝐴 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 r19.41dv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 1 anim1i ( ( 𝜑𝜒 ) → ( ∃ 𝑥𝐴 𝜓𝜒 ) )
3 r19.41v ( ∃ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ( ∃ 𝑥𝐴 𝜓𝜒 ) )
4 2 3 sylibr ( ( 𝜑𝜒 ) → ∃ 𝑥𝐴 ( 𝜓𝜒 ) )