Description: A complex deduction form of r19.41v . (Contributed by Zhi Wang, 6-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | r19.41dv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
Assertion | r19.41dv | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41dv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
2 | 1 | anim1i | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ 𝜒 ) ) |
3 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ 𝜒 ) ) | |
4 | 2 3 | sylibr | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜒 ) ) |