Description: A complex deduction form of r19.41v . (Contributed by Zhi Wang, 6-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | r19.41dv.1 | |- ( ph -> E. x e. A ps ) |
|
Assertion | r19.41dv | |- ( ( ph /\ ch ) -> E. x e. A ( ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41dv.1 | |- ( ph -> E. x e. A ps ) |
|
2 | 1 | anim1i | |- ( ( ph /\ ch ) -> ( E. x e. A ps /\ ch ) ) |
3 | r19.41v | |- ( E. x e. A ( ps /\ ch ) <-> ( E. x e. A ps /\ ch ) ) |
|
4 | 2 3 | sylibr | |- ( ( ph /\ ch ) -> E. x e. A ( ps /\ ch ) ) |