Metamath Proof Explorer


Theorem r19.41dv

Description: A complex deduction form of r19.41v . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypothesis r19.41dv.1
|- ( ph -> E. x e. A ps )
Assertion r19.41dv
|- ( ( ph /\ ch ) -> E. x e. A ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 r19.41dv.1
 |-  ( ph -> E. x e. A ps )
2 1 anim1i
 |-  ( ( ph /\ ch ) -> ( E. x e. A ps /\ ch ) )
3 r19.41v
 |-  ( E. x e. A ( ps /\ ch ) <-> ( E. x e. A ps /\ ch ) )
4 2 3 sylibr
 |-  ( ( ph /\ ch ) -> E. x e. A ( ps /\ ch ) )