Metamath Proof Explorer


Theorem r19.41dv

Description: A complex deduction form of r19.41v . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypothesis r19.41dv.1 φ x A ψ
Assertion r19.41dv φ χ x A ψ χ

Proof

Step Hyp Ref Expression
1 r19.41dv.1 φ x A ψ
2 1 anim1i φ χ x A ψ χ
3 r19.41v x A ψ χ x A ψ χ
4 2 3 sylibr φ χ x A ψ χ