Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb . (Contributed by Zhi Wang, 30-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralbidb.1 | |- ( ph -> ( x e. A <-> ( x e. B /\ ps ) ) ) |
|
ralbidc.2 | |- ( ph -> ( ( x e. A /\ ( x e. B /\ ps ) ) -> ( ch <-> th ) ) ) |
||
Assertion | ralbidc | |- ( ph -> ( A. x e. A ch <-> A. x e. B ( ps -> th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidb.1 | |- ( ph -> ( x e. A <-> ( x e. B /\ ps ) ) ) |
|
2 | ralbidc.2 | |- ( ph -> ( ( x e. A /\ ( x e. B /\ ps ) ) -> ( ch <-> th ) ) ) |
|
3 | 1 2 | logic2 | |- ( ph -> ( ( x e. A -> ch ) <-> ( ( x e. B /\ ps ) -> th ) ) ) |
4 | impexp | |- ( ( ( x e. B /\ ps ) -> th ) <-> ( x e. B -> ( ps -> th ) ) ) |
|
5 | 3 4 | bitrdi | |- ( ph -> ( ( x e. A -> ch ) <-> ( x e. B -> ( ps -> th ) ) ) ) |
6 | 5 | ralbidv2 | |- ( ph -> ( A. x e. A ch <-> A. x e. B ( ps -> th ) ) ) |