Metamath Proof Explorer


Theorem ralbidc

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses ralbidb.1
|- ( ph -> ( x e. A <-> ( x e. B /\ ps ) ) )
ralbidc.2
|- ( ph -> ( ( x e. A /\ ( x e. B /\ ps ) ) -> ( ch <-> th ) ) )
Assertion ralbidc
|- ( ph -> ( A. x e. A ch <-> A. x e. B ( ps -> th ) ) )

Proof

Step Hyp Ref Expression
1 ralbidb.1
 |-  ( ph -> ( x e. A <-> ( x e. B /\ ps ) ) )
2 ralbidc.2
 |-  ( ph -> ( ( x e. A /\ ( x e. B /\ ps ) ) -> ( ch <-> th ) ) )
3 1 2 logic2
 |-  ( ph -> ( ( x e. A -> ch ) <-> ( ( x e. B /\ ps ) -> th ) ) )
4 impexp
 |-  ( ( ( x e. B /\ ps ) -> th ) <-> ( x e. B -> ( ps -> th ) ) )
5 3 4 bitrdi
 |-  ( ph -> ( ( x e. A -> ch ) <-> ( x e. B -> ( ps -> th ) ) ) )
6 5 ralbidv2
 |-  ( ph -> ( A. x e. A ch <-> A. x e. B ( ps -> th ) ) )