Metamath Proof Explorer


Theorem ralbidb

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypotheses ralbidb.1 φxAxBψ
ralbidb.2 φxAχθ
Assertion ralbidb φxAχxBψθ

Proof

Step Hyp Ref Expression
1 ralbidb.1 φxAxBψ
2 ralbidb.2 φxAχθ
3 1 2 logic1a φxAχxBψθ
4 impexp xBψθxBψθ
5 3 4 bitrdi φxAχxBψθ
6 5 ralbidv2 φxAχxBψθ