Metamath Proof Explorer


Theorem ralcom

Description: Commutation of restricted universal quantifiers. See ralcom2 for a version without disjoint variable condition on x , y . This theorem should be used in place of ralcom2 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion ralcom xAyBφyBxAφ

Proof

Step Hyp Ref Expression
1 ancomst xAyBφyBxAφ
2 1 2albii xyxAyBφxyyBxAφ
3 alcom xyyBxAφyxyBxAφ
4 2 3 bitri xyxAyBφyxyBxAφ
5 r2al xAyBφxyxAyBφ
6 r2al yBxAφyxyBxAφ
7 4 5 6 3bitr4i xAyBφyBxAφ