Metamath Proof Explorer


Theorem ralcom2

Description: Commutation of restricted universal quantifiers. Note that x and y need not be disjoint (this makes the proof longer). This theorem relies on the full set of axioms up to ax-ext and it should no longer be used. Usage of ralcom is highly encouraged. (Contributed by NM, 24-Nov-1994) (Proof shortened by Mario Carneiro, 17-Oct-2016) (New usage is discouraged.)

Ref Expression
Assertion ralcom2 xAyAφyAxAφ

Proof

Step Hyp Ref Expression
1 eleq1w x=yxAyA
2 1 sps xx=yxAyA
3 2 imbi1d xx=yxAφyAφ
4 3 dral1 xx=yxxAφyyAφ
5 4 bicomd xx=yyyAφxxAφ
6 df-ral yAφyyAφ
7 df-ral xAφxxAφ
8 5 6 7 3bitr4g xx=yyAφxAφ
9 2 8 imbi12d xx=yxAyAφyAxAφ
10 9 dral1 xx=yxxAyAφyyAxAφ
11 df-ral xAyAφxxAyAφ
12 df-ral yAxAφyyAxAφ
13 10 11 12 3bitr4g xx=yxAyAφyAxAφ
14 13 biimpd xx=yxAyAφyAxAφ
15 nfnae y¬xx=y
16 nfra2 yxAyAφ
17 15 16 nfan y¬xx=yxAyAφ
18 nfnae x¬xx=y
19 nfra1 xxAyAφ
20 18 19 nfan x¬xx=yxAyAφ
21 nfcvf ¬xx=y_xy
22 21 adantr ¬xx=yxAyAφ_xy
23 nfcvd ¬xx=yxAyAφ_xA
24 22 23 nfeld ¬xx=yxAyAφxyA
25 20 24 nfan1 x¬xx=yxAyAφyA
26 rsp2 xAyAφxAyAφ
27 26 ancomsd xAyAφyAxAφ
28 27 expdimp xAyAφyAxAφ
29 28 adantll ¬xx=yxAyAφyAxAφ
30 25 29 ralrimi ¬xx=yxAyAφyAxAφ
31 30 ex ¬xx=yxAyAφyAxAφ
32 17 31 ralrimi ¬xx=yxAyAφyAxAφ
33 32 ex ¬xx=yxAyAφyAxAφ
34 14 33 pm2.61i xAyAφyAxAφ