Description: Commutation of restricted universal quantifiers. Note that x and y need not be disjoint (this makes the proof longer). This theorem relies on the full set of axioms up to ax-ext and it should no longer be used. Usage of ralcom is highly encouraged. (Contributed by NM, 24-Nov-1994) (Proof shortened by Mario Carneiro, 17-Oct-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ralcom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w | |
|
2 | 1 | sps | |
3 | 2 | imbi1d | |
4 | 3 | dral1 | |
5 | 4 | bicomd | |
6 | df-ral | |
|
7 | df-ral | |
|
8 | 5 6 7 | 3bitr4g | |
9 | 2 8 | imbi12d | |
10 | 9 | dral1 | |
11 | df-ral | |
|
12 | df-ral | |
|
13 | 10 11 12 | 3bitr4g | |
14 | 13 | biimpd | |
15 | nfnae | |
|
16 | nfra2 | |
|
17 | 15 16 | nfan | |
18 | nfnae | |
|
19 | nfra1 | |
|
20 | 18 19 | nfan | |
21 | nfcvf | |
|
22 | 21 | adantr | |
23 | nfcvd | |
|
24 | 22 23 | nfeld | |
25 | 20 24 | nfan1 | |
26 | rsp2 | |
|
27 | 26 | ancomsd | |
28 | 27 | expdimp | |
29 | 28 | adantll | |
30 | 25 29 | ralrimi | |
31 | 30 | ex | |
32 | 17 31 | ralrimi | |
33 | 32 | ex | |
34 | 14 33 | pm2.61i | |