| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 2 | 1 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 3 | 2 | imbi1d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑦  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 4 | 3 | dral1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 5 | 4 | bicomd | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 6 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐴 𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜑 ) ) | 
						
							| 7 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 8 | 5 6 7 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑦  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 9 | 2 8 | imbi12d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 𝜑 )  ↔  ( 𝑦  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) ) ) | 
						
							| 10 | 9 | dral1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) ) ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 𝜑 ) ) | 
						
							| 12 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 13 | 10 11 12 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 15 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 16 |  | nfra2 | ⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 | 
						
							| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 ) | 
						
							| 18 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 19 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 | 
						
							| 20 | 18 19 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 ) | 
						
							| 21 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 23 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 24 | 22 23 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  →  Ⅎ 𝑥 𝑦  ∈  𝐴 ) | 
						
							| 25 | 20 24 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  ∧  𝑦  ∈  𝐴 ) | 
						
							| 26 |  | rsp2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝜑 ) ) | 
						
							| 27 | 26 | ancomsd | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  →  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝜑 ) ) | 
						
							| 28 | 27 | expdimp | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 30 | 25 29 | ralrimi | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  ∧  𝑦  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 31 | 30 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  →  ( 𝑦  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 32 | 17 31 | ralrimi | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑 )  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 33 | 32 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 34 | 14 33 | pm2.61i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝜑  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑 ) |