Metamath Proof Explorer


Theorem ralcom4f

Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis ralcom4f.1 _yA
Assertion ralcom4f xAyφyxAφ

Proof

Step Hyp Ref Expression
1 ralcom4f.1 _yA
2 nfcv _xV
3 1 2 ralcomf xAyVφyVxAφ
4 ralv yVφyφ
5 4 ralbii xAyVφxAyφ
6 ralv yVxAφyxAφ
7 3 5 6 3bitr3i xAyφyxAφ