Metamath Proof Explorer


Theorem ralv

Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion ralv xVφxφ

Proof

Step Hyp Ref Expression
1 df-ral xVφxxVφ
2 vex xV
3 2 a1bi φxVφ
4 3 albii xφxxVφ
5 1 4 bitr4i xVφxφ