Metamath Proof Explorer
		
		
		
		Description:  Version of raleqbidv with additional disjoint variable conditions, not
       requiring ax-8 nor df-clel .  (Contributed by BJ, 22-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | raleqbidvv.1 |  | 
					
						|  |  | raleqbidvv.2 |  | 
				
					|  | Assertion | raleqbidvv |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | raleqbidvv.1 |  | 
						
							| 2 |  | raleqbidvv.2 |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 | 1 3 | raleqbidva |  |