Metamath Proof Explorer


Theorem raleqf

Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses raleqf.1 _xA
raleqf.2 _xB
Assertion raleqf A=BxAφxBφ

Proof

Step Hyp Ref Expression
1 raleqf.1 _xA
2 raleqf.2 _xB
3 1 2 nfeq xA=B
4 eleq2 A=BxAxB
5 4 imbi1d A=BxAφxBφ
6 3 5 albid A=BxxAφxxBφ
7 df-ral xAφxxAφ
8 df-ral xBφxxBφ
9 6 7 8 3bitr4g A=BxAφxBφ