Metamath Proof Explorer


Theorem raln

Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)

Ref Expression
Assertion raln xA¬φx¬xAφ

Proof

Step Hyp Ref Expression
1 df-ral xA¬φxxA¬φ
2 imnang xxA¬φx¬xAφ
3 1 2 bitri xA¬φx¬xAφ