Metamath Proof Explorer


Theorem ralnralall

Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion ralnralall AxAφxA¬φψ

Proof

Step Hyp Ref Expression
1 r19.26 xAφ¬φxAφxA¬φ
2 pm3.24 ¬φ¬φ
3 2 bifal φ¬φ
4 3 ralbii xAφ¬φxA
5 r19.3rzv AxA
6 falim ψ
7 5 6 syl6bir AxAψ
8 4 7 biimtrid AxAφ¬φψ
9 1 8 biimtrrid AxAφxA¬φψ