Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | falseral0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | |
|
2 | 19.26 | |
|
3 | con3 | |
|
4 | 3 | impcom | |
5 | 4 | alimi | |
6 | alnex | |
|
7 | 5 6 | sylib | |
8 | notnotb | |
|
9 | neq0 | |
|
10 | 8 9 | xchbinx | |
11 | 7 10 | sylibr | |
12 | 2 11 | sylbir | |
13 | 1 12 | sylan2b | |