Metamath Proof Explorer


Theorem falseral0

Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020)

Ref Expression
Assertion falseral0 x¬φxAφA=

Proof

Step Hyp Ref Expression
1 df-ral xAφxxAφ
2 19.26 x¬φxAφx¬φxxAφ
3 con3 xAφ¬φ¬xA
4 3 impcom ¬φxAφ¬xA
5 4 alimi x¬φxAφx¬xA
6 alnex x¬xA¬xxA
7 5 6 sylib x¬φxAφ¬xxA
8 notnotb A=¬¬A=
9 neq0 ¬A=xxA
10 8 9 xchbinx A=¬xxA
11 7 10 sylibr x¬φxAφA=
12 2 11 sylbir x¬φxxAφA=
13 1 12 sylan2b x¬φxAφA=