| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 2 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 3 |
|
con3 |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 4 |
3
|
impcom |
⊢ ( ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 5 |
4
|
alimi |
⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 6 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 7 |
5 6
|
sylib |
⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 8 |
|
notnotb |
⊢ ( 𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅ ) |
| 9 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 10 |
8 9
|
xchbinx |
⊢ ( 𝐴 = ∅ ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 11 |
7 10
|
sylibr |
⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝐴 = ∅ ) |
| 12 |
2 11
|
sylbir |
⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝐴 = ∅ ) |
| 13 |
1 12
|
sylan2b |
⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |