Metamath Proof Explorer


Theorem falseral0

Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020)

Ref Expression
Assertion falseral0 ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 19.26 ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
3 con3 ( ( 𝑥𝐴𝜑 ) → ( ¬ 𝜑 → ¬ 𝑥𝐴 ) )
4 3 impcom ( ( ¬ 𝜑 ∧ ( 𝑥𝐴𝜑 ) ) → ¬ 𝑥𝐴 )
5 4 alimi ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥𝐴𝜑 ) ) → ∀ 𝑥 ¬ 𝑥𝐴 )
6 alnex ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃ 𝑥 𝑥𝐴 )
7 5 6 sylib ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥𝐴𝜑 ) ) → ¬ ∃ 𝑥 𝑥𝐴 )
8 notnotb ( 𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅ )
9 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )
10 8 9 xchbinx ( 𝐴 = ∅ ↔ ¬ ∃ 𝑥 𝑥𝐴 )
11 7 10 sylibr ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥𝐴𝜑 ) ) → 𝐴 = ∅ )
12 2 11 sylbir ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) → 𝐴 = ∅ )
13 1 12 sylan2b ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → 𝐴 = ∅ )