Metamath Proof Explorer


Theorem ralprgf

Description: Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 8-Apr-2023)

Ref Expression
Hypotheses ralprgf.1 x ψ
ralprgf.2 x χ
ralprgf.a x = A φ ψ
ralprgf.b x = B φ χ
Assertion ralprgf A V B W x A B φ ψ χ

Proof

Step Hyp Ref Expression
1 ralprgf.1 x ψ
2 ralprgf.2 x χ
3 ralprgf.a x = A φ ψ
4 ralprgf.b x = B φ χ
5 df-pr A B = A B
6 5 raleqi x A B φ x A B φ
7 ralunb x A B φ x A φ x B φ
8 6 7 bitri x A B φ x A φ x B φ
9 1 3 ralsngf A V x A φ ψ
10 2 4 ralsngf B W x B φ χ
11 9 10 bi2anan9 A V B W x A φ x B φ ψ χ
12 8 11 bitrid A V B W x A B φ ψ χ