Metamath Proof Explorer


Theorem ralprgf

Description: Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 8-Apr-2023)

Ref Expression
Hypotheses ralprgf.1 xψ
ralprgf.2 xχ
ralprgf.a x=Aφψ
ralprgf.b x=Bφχ
Assertion ralprgf AVBWxABφψχ

Proof

Step Hyp Ref Expression
1 ralprgf.1 xψ
2 ralprgf.2 xχ
3 ralprgf.a x=Aφψ
4 ralprgf.b x=Bφχ
5 df-pr AB=AB
6 5 raleqi xABφxABφ
7 ralunb xABφxAφxBφ
8 6 7 bitri xABφxAφxBφ
9 1 3 ralsngf AVxAφψ
10 2 4 ralsngf BWxBφχ
11 9 10 bi2anan9 AVBWxAφxBφψχ
12 8 11 bitrid AVBWxABφψχ