Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralrexbidOLDOLD
Metamath Proof Explorer
Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV , 21-Oct-2023) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
ralrexbid.1
⊢ φ → ψ ↔ θ
Assertion
ralrexbidOLDOLD
⊢ ∀ x ∈ A φ → ∃ x ∈ A ψ ↔ ∃ x ∈ A θ
Proof
Step
Hyp
Ref
Expression
1
ralrexbid.1
⊢ φ → ψ ↔ θ
2
nfra1
⊢ Ⅎ x ∀ x ∈ A φ
3
rspa
⊢ ∀ x ∈ A φ ∧ x ∈ A → φ
4
3 1
syl
⊢ ∀ x ∈ A φ ∧ x ∈ A → ψ ↔ θ
5
2 4
rexbida
⊢ ∀ x ∈ A φ → ∃ x ∈ A ψ ↔ ∃ x ∈ A θ