Metamath Proof Explorer


Theorem ralrexbidOLDOLD

Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralrexbid.1 φ ψ θ
Assertion ralrexbidOLDOLD x A φ x A ψ x A θ

Proof

Step Hyp Ref Expression
1 ralrexbid.1 φ ψ θ
2 nfra1 x x A φ
3 rspa x A φ x A φ
4 3 1 syl x A φ x A ψ θ
5 2 4 rexbida x A φ x A ψ x A θ