Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralrexbidOLDOLD
Metamath Proof Explorer
Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV , 21-Oct-2023) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
ralrexbid.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) )
Assertion
ralrexbidOLDOLD
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) )
Proof
Step
Hyp
Ref
Expression
1
ralrexbid.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) )
2
nfra1
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝜑
3
rspa
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 )
4
3 1
syl
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜃 ) )
5
2 4
rexbida
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) )