Metamath Proof Explorer


Theorem ralrexbidOLDOLD

Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
Assertion ralrexbidOLDOLD ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
2 nfra1 𝑥𝑥𝐴 𝜑
3 rspa ( ( ∀ 𝑥𝐴 𝜑𝑥𝐴 ) → 𝜑 )
4 3 1 syl ( ( ∀ 𝑥𝐴 𝜑𝑥𝐴 ) → ( 𝜓𝜃 ) )
5 2 4 rexbida ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )