Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrexbid.1 | |- ( ph -> ( ps <-> th ) ) |
|
Assertion | ralrexbidOLDOLD | |- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrexbid.1 | |- ( ph -> ( ps <-> th ) ) |
|
2 | nfra1 | |- F/ x A. x e. A ph |
|
3 | rspa | |- ( ( A. x e. A ph /\ x e. A ) -> ph ) |
|
4 | 3 1 | syl | |- ( ( A. x e. A ph /\ x e. A ) -> ( ps <-> th ) ) |
5 | 2 4 | rexbida | |- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) ) |