Metamath Proof Explorer


Theorem ralrexbidOLDOLD

Description: Obsolete version of ralrexbid as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralrexbid.1
|- ( ph -> ( ps <-> th ) )
Assertion ralrexbidOLDOLD
|- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) )

Proof

Step Hyp Ref Expression
1 ralrexbid.1
 |-  ( ph -> ( ps <-> th ) )
2 nfra1
 |-  F/ x A. x e. A ph
3 rspa
 |-  ( ( A. x e. A ph /\ x e. A ) -> ph )
4 3 1 syl
 |-  ( ( A. x e. A ph /\ x e. A ) -> ( ps <-> th ) )
5 2 4 rexbida
 |-  ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) )