Metamath Proof Explorer


Theorem raluz

Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion raluz MnMφnMnφ

Proof

Step Hyp Ref Expression
1 eluz1 MnMnMn
2 1 imbi1d MnMφnMnφ
3 impexp nMnφnMnφ
4 2 3 bitrdi MnMφnMnφ
5 4 ralbidv2 MnMφnMnφ