Metamath Proof Explorer


Theorem raluz2

Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion raluz2 nMφMnMnφ

Proof

Step Hyp Ref Expression
1 eluz2 nMMnMn
2 3anass MnMnMnMn
3 1 2 bitri nMMnMn
4 3 imbi1i nMφMnMnφ
5 impexp MnMnφMnMnφ
6 impexp nMnφnMnφ
7 6 imbi2i MnMnφMnMnφ
8 5 7 bitri MnMnφMnMnφ
9 bi2.04 MnMnφnMMnφ
10 8 9 bitri MnMnφnMMnφ
11 4 10 bitri nMφnMMnφ
12 11 ralbii2 nMφnMMnφ
13 r19.21v nMMnφMnMnφ
14 12 13 bitri nMφMnMnφ