Metamath Proof Explorer


Theorem rankbnd

Description: The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 AV
Assertion rankbnd xAsucrankxBrankAB

Proof

Step Hyp Ref Expression
1 rankr1b.1 AV
2 1 rankval4 rankA=xAsucrankx
3 2 sseq1i rankABxAsucrankxB
4 iunss xAsucrankxBxAsucrankxB
5 3 4 bitr2i xAsucrankxBrankAB