Metamath Proof Explorer


Theorem rankfu

Description: An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Hypotheses rankxpl.1 AV
rankxpl.2 BV
Assertion rankfu F:ABrankFsucsucrankAB

Proof

Step Hyp Ref Expression
1 rankxpl.1 AV
2 rankxpl.2 BV
3 fssxp F:ABFA×B
4 1 2 xpex A×BV
5 4 rankss FA×BrankFrankA×B
6 1 2 rankxpu rankA×BsucsucrankAB
7 5 6 sstrdi FA×BrankFsucsucrankAB
8 3 7 syl F:ABrankFsucsucrankAB