Metamath Proof Explorer


Theorem rankr1b

Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankr1b.1 AV
Assertion rankr1b BOnAR1BrankAB

Proof

Step Hyp Ref Expression
1 rankr1b.1 AV
2 r1fnon R1FnOn
3 2 fndmi domR1=On
4 3 eleq2i BdomR1BOn
5 unir1 R1On=V
6 1 5 eleqtrri AR1On
7 rankr1bg AR1OnBdomR1AR1BrankAB
8 6 7 mpan BdomR1AR1BrankAB
9 4 8 sylbir BOnAR1BrankAB