Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Infinity Rank rankr1g  
				
		 
		
			
		 
		Description:   A relationship between the rank function and the cumulative hierarchy of
     sets function R1  .  Proposition 9.15(2) of TakeutiZaring  p. 79.
     (Contributed by NM , 6-Oct-2003)   (Revised by Mario Carneiro , 17-Nov-2014) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					rankr1g    ⊢   A  ∈  V    →    B  =   rank  ⁡  A     ↔    ¬   A  ∈   R 1 ⁡  B       ∧   A  ∈   R 1 ⁡   suc  ⁡  B              
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							elex   ⊢   A  ∈  V    →   A  ∈  V         
						
							2 
								
							 
							unir1  ⊢    ⋃   R 1 On     =  V       
						
							3 
								1  2 
							 
							eleqtrrdi   ⊢   A  ∈  V    →   A  ∈   ⋃   R 1 On            
						
							4 
								
							 
							rankr1c   ⊢   A  ∈   ⋃   R 1 On       →    B  =   rank  ⁡  A     ↔    ¬   A  ∈   R 1 ⁡  B       ∧   A  ∈   R 1 ⁡   suc  ⁡  B              
						
							5 
								3  4 
							 
							syl   ⊢   A  ∈  V    →    B  =   rank  ⁡  A     ↔    ¬   A  ∈   R 1 ⁡  B       ∧   A  ∈   R 1 ⁡   suc  ⁡  B