Metamath Proof Explorer


Theorem rankval

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Hypothesis rankval.1 AV
Assertion rankval rankA=xOn|AR1sucx

Proof

Step Hyp Ref Expression
1 rankval.1 AV
2 unir1 R1On=V
3 1 2 eleqtrri AR1On
4 rankvalb AR1OnrankA=xOn|AR1sucx
5 3 4 ax-mp rankA=xOn|AR1sucx