Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rankval.1 | |- A e. _V |
|
Assertion | rankval | |- ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankval.1 | |- A e. _V |
|
2 | unir1 | |- U. ( R1 " On ) = _V |
|
3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) |
4 | rankvalb | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
|
5 | 3 4 | ax-mp | |- ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } |