Metamath Proof Explorer


Theorem rankval

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Hypothesis rankval.1
|- A e. _V
Assertion rankval
|- ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) }

Proof

Step Hyp Ref Expression
1 rankval.1
 |-  A e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  A e. U. ( R1 " On )
4 rankvalb
 |-  ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } )
5 3 4 ax-mp
 |-  ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) }