| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( y = A -> ( rank ` y ) = ( rank ` A ) ) |
| 2 |
|
eleq1 |
|- ( y = A -> ( y e. ( R1 ` suc x ) <-> A e. ( R1 ` suc x ) ) ) |
| 3 |
2
|
rabbidv |
|- ( y = A -> { x e. On | y e. ( R1 ` suc x ) } = { x e. On | A e. ( R1 ` suc x ) } ) |
| 4 |
3
|
inteqd |
|- ( y = A -> |^| { x e. On | y e. ( R1 ` suc x ) } = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 5 |
1 4
|
eqeq12d |
|- ( y = A -> ( ( rank ` y ) = |^| { x e. On | y e. ( R1 ` suc x ) } <-> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 6 |
|
vex |
|- y e. _V |
| 7 |
6
|
rankval |
|- ( rank ` y ) = |^| { x e. On | y e. ( R1 ` suc x ) } |
| 8 |
5 7
|
vtoclg |
|- ( A e. V -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |