Metamath Proof Explorer


Theorem ranrcl3

Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
Assertion ranrcl3 φ X C Func E

Proof

Step Hyp Ref Expression
1 ranrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
2 df-br Could not format ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
3 1 2 sylib Could not format ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
4 ranrcl Could not format ( <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) with typecode |-
5 3 4 syl φ F C Func D X C Func E
6 5 simprd φ X C Func E