Metamath Proof Explorer


Theorem ranrcl3

Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A )
Assertion ranrcl3
|- ( ph -> X e. ( C Func E ) )

Proof

Step Hyp Ref Expression
1 ranrcl2.l
 |-  ( ph -> L ( F ( <. C , D >. Ran E ) X ) A )
2 df-br
 |-  ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) )
3 1 2 sylib
 |-  ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) )
4 ranrcl
 |-  ( <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) )
5 3 4 syl
 |-  ( ph -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) )
6 5 simprd
 |-  ( ph -> X e. ( C Func E ) )