| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranrcl2.l |
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) |
| 2 |
1
|
ranrcl2 |
|- ( ph -> F e. ( C Func D ) ) |
| 3 |
|
opex |
|- <. D , E >. e. _V |
| 4 |
3
|
a1i |
|- ( ph -> <. D , E >. e. _V ) |
| 5 |
2 4
|
prcofelvv |
|- ( ph -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) |
| 6 |
|
1st2nd2 |
|- ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |