Metamath Proof Explorer


Theorem ranrcl4lem

Description: Lemma for ranrcl4 and ranrcl5 . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
Assertion ranrcl4lem ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
2 1 ranrcl2 ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
3 opex 𝐷 , 𝐸 ⟩ ∈ V
4 3 a1i ( 𝜑 → ⟨ 𝐷 , 𝐸 ⟩ ∈ V )
5 2 4 prcofelvv ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ∈ ( V × V ) )
6 1st2nd2 ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ∈ ( V × V ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ )
7 5 6 syl ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ )