Metamath Proof Explorer


Theorem ranrcl5

Description: The second component of a right Kan extension is a natural transformation. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
ranrcl5.n 𝑁 = ( 𝐶 Nat 𝐸 )
Assertion ranrcl5 ( 𝜑𝐴 ∈ ( ( 𝐿func 𝐹 ) 𝑁 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
2 ranrcl5.n 𝑁 = ( 𝐶 Nat 𝐸 )
3 eqid ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
4 eqid ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
5 1 ranrcl4lem ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ )
6 3 4 5 1 isran2 ( 𝜑𝐿 ( ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) ) 𝑋 ) 𝐴 )
7 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
8 7 2 fuchom 𝑁 = ( Hom ‘ ( 𝐶 FuncCat 𝐸 ) )
9 6 4 8 oppcuprcl5 ( 𝜑𝐴 ∈ ( ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) 𝑁 𝑋 ) )
10 1 ranrcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )
11 eqidd ( 𝜑 → ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) )
12 10 11 prcof1 ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿func 𝐹 ) )
13 12 oveq1d ( 𝜑 → ( ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) 𝑁 𝑋 ) = ( ( 𝐿func 𝐹 ) 𝑁 𝑋 ) )
14 9 13 eleqtrd ( 𝜑𝐴 ∈ ( ( 𝐿func 𝐹 ) 𝑁 𝑋 ) )