| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranrcl2.l |
⊢ ( 𝜑 → 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) 𝐴 ) |
| 2 |
|
ranrcl5.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐸 ) |
| 3 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 4 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 5 |
1
|
ranrcl4lem |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 6 |
3 4 5 1
|
isran2 |
⊢ ( 𝜑 → 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) ) 𝑋 ) 𝐴 ) |
| 7 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 8 |
7 2
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 9 |
6 4 8
|
oppcuprcl5 |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 𝑁 𝑋 ) ) |
| 10 |
1
|
ranrcl4 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 12 |
10 11
|
prcof1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿 ∘func 𝐹 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 𝑁 𝑋 ) = ( ( 𝐿 ∘func 𝐹 ) 𝑁 𝑋 ) ) |
| 14 |
9 13
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝐿 ∘func 𝐹 ) 𝑁 𝑋 ) ) |