| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranrcl2.l |
⊢ ( 𝜑 → 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) 𝐴 ) |
| 2 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 3 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 4 |
1
|
ranrcl4lem |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 5 |
2 3 4 1
|
isran2 |
⊢ ( 𝜑 → 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) ) 𝑋 ) 𝐴 ) |
| 6 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 7 |
6
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 8 |
5 2 7
|
oppcuprcl4 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |