Metamath Proof Explorer


Theorem ranrcl4

Description: The first component of a right Kan extension is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
Assertion ranrcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )

Proof

Step Hyp Ref Expression
1 ranrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
2 eqid ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
3 eqid ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
4 1 ranrcl4lem ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ )
5 2 3 4 1 isran2 ( 𝜑𝐿 ( ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) ) 𝑋 ) 𝐴 )
6 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
7 6 fucbas ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) )
8 5 2 7 oppcuprcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )