Metamath Proof Explorer


Theorem ranrcl4

Description: The first component of a right Kan extension is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
Assertion ranrcl4 φ L D Func E

Proof

Step Hyp Ref Expression
1 ranrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
2 eqid oppCat D FuncCat E = oppCat D FuncCat E
3 eqid oppCat C FuncCat E = oppCat C FuncCat E
4 1 ranrcl4lem Could not format ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
5 2 3 4 1 isran2 Could not format ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) : No typesetting found for |- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) with typecode |-
6 eqid D FuncCat E = D FuncCat E
7 6 fucbas D Func E = Base D FuncCat E
8 5 2 7 oppcuprcl4 φ L D Func E