Metamath Proof Explorer


Theorem ranrcl5

Description: The second component of a right Kan extension is a natural transformation. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses ranrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
ranrcl5.n N = C Nat E
Assertion ranrcl5 φ A L func F N X

Proof

Step Hyp Ref Expression
1 ranrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
2 ranrcl5.n N = C Nat E
3 eqid oppCat D FuncCat E = oppCat D FuncCat E
4 eqid oppCat C FuncCat E = oppCat C FuncCat E
5 1 ranrcl4lem Could not format ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
6 3 4 5 1 isran2 Could not format ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) : No typesetting found for |- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) with typecode |-
7 eqid C FuncCat E = C FuncCat E
8 7 2 fuchom N = Hom C FuncCat E
9 6 4 8 oppcuprcl5 Could not format ( ph -> A e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) ) : No typesetting found for |- ( ph -> A e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) ) with typecode |-
10 1 ranrcl4 φ L D Func E
11 eqidd Could not format ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) with typecode |-
12 10 11 prcof1 Could not format ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) with typecode |-
13 12 oveq1d Could not format ( ph -> ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) = ( ( L o.func F ) N X ) ) : No typesetting found for |- ( ph -> ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) = ( ( L o.func F ) N X ) ) with typecode |-
14 9 13 eleqtrd φ A L func F N X