| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranrcl2.l |
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) |
| 2 |
|
ranrcl5.n |
|- N = ( C Nat E ) |
| 3 |
|
eqid |
|- ( oppCat ` ( D FuncCat E ) ) = ( oppCat ` ( D FuncCat E ) ) |
| 4 |
|
eqid |
|- ( oppCat ` ( C FuncCat E ) ) = ( oppCat ` ( C FuncCat E ) ) |
| 5 |
1
|
ranrcl4lem |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |
| 6 |
3 4 5 1
|
isran2 |
|- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) |
| 7 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 8 |
7 2
|
fuchom |
|- N = ( Hom ` ( C FuncCat E ) ) |
| 9 |
6 4 8
|
oppcuprcl5 |
|- ( ph -> A e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) ) |
| 10 |
1
|
ranrcl4 |
|- ( ph -> L e. ( D Func E ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 12 |
10 11
|
prcof1 |
|- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) = ( ( L o.func F ) N X ) ) |
| 14 |
9 13
|
eleqtrd |
|- ( ph -> A e. ( ( L o.func F ) N X ) ) |