| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranrcl2.l |
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) |
| 2 |
|
eqid |
|- ( oppCat ` ( D FuncCat E ) ) = ( oppCat ` ( D FuncCat E ) ) |
| 3 |
|
eqid |
|- ( oppCat ` ( C FuncCat E ) ) = ( oppCat ` ( C FuncCat E ) ) |
| 4 |
1
|
ranrcl4lem |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |
| 5 |
2 3 4 1
|
isran2 |
|- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) X ) A ) |
| 6 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 7 |
6
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 8 |
5 2 7
|
oppcuprcl4 |
|- ( ph -> L e. ( D Func E ) ) |