| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanup.s |
|- S = ( C FuncCat E ) |
| 2 |
|
lanup.m |
|- M = ( D Nat E ) |
| 3 |
|
lanup.n |
|- N = ( C Nat E ) |
| 4 |
|
lanup.x |
|- .xb = ( comp ` S ) |
| 5 |
|
lanup.f |
|- ( ph -> F e. ( C Func D ) ) |
| 6 |
|
lanup.l |
|- ( ph -> L e. ( D Func E ) ) |
| 7 |
|
lanup.a |
|- ( ph -> A e. ( X N ( L o.func F ) ) ) |
| 8 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 9 |
8
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 10 |
1
|
fucbas |
|- ( C Func E ) = ( Base ` S ) |
| 11 |
8 2
|
fuchom |
|- M = ( Hom ` ( D FuncCat E ) ) |
| 12 |
1 3
|
fuchom |
|- N = ( Hom ` S ) |
| 13 |
3
|
natrcl |
|- ( A e. ( X N ( L o.func F ) ) -> ( X e. ( C Func E ) /\ ( L o.func F ) e. ( C Func E ) ) ) |
| 14 |
7 13
|
syl |
|- ( ph -> ( X e. ( C Func E ) /\ ( L o.func F ) e. ( C Func E ) ) ) |
| 15 |
14
|
simpld |
|- ( ph -> X e. ( C Func E ) ) |
| 16 |
15
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func E ) ( 2nd ` X ) ) |
| 17 |
16
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 18 |
8 17 1 5
|
prcoffunca |
|- ( ph -> ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func S ) ) |
| 19 |
18
|
func1st2nd |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) ( ( D FuncCat E ) Func S ) ( 2nd ` ( <. D , E >. -o.F F ) ) ) |
| 20 |
|
eqidd |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 21 |
6 20
|
prcof1 |
|- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) = ( X N ( L o.func F ) ) ) |
| 23 |
7 22
|
eleqtrrd |
|- ( ph -> A e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) ) |
| 24 |
9 10 11 12 4 15 19 6 23
|
isup |
|- ( ph -> ( L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP S ) X ) A <-> A. l e. ( D Func E ) A. a e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) E! b e. ( L M l ) a = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) ) |
| 25 |
|
eqidd |
|- ( ph -> ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) ) |
| 26 |
8 1 5 15 25
|
lanval |
|- ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP S ) X ) ) |
| 27 |
26
|
breqd |
|- ( ph -> ( L ( F ( <. C , D >. Lan E ) X ) A <-> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP S ) X ) A ) ) |
| 28 |
18
|
up1st2ndb |
|- ( ph -> ( L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP S ) X ) A <-> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP S ) X ) A ) ) |
| 29 |
27 28
|
bitrd |
|- ( ph -> ( L ( F ( <. C , D >. Lan E ) X ) A <-> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP S ) X ) A ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ l e. ( D Func E ) ) -> l e. ( D Func E ) ) |
| 31 |
|
eqidd |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 32 |
30 31
|
prcof1 |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) = ( l o.func F ) ) |
| 33 |
32
|
eqcomd |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( l o.func F ) = ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) |
| 34 |
33
|
oveq2d |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( X N ( l o.func F ) ) = ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) ) |
| 35 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 36 |
35
|
opeq2d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. = <. X , ( L o.func F ) >. ) |
| 37 |
32
|
ad2antrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) = ( l o.func F ) ) |
| 38 |
36 37
|
oveq12d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) = ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) ) |
| 39 |
|
simpr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> b e. ( L M l ) ) |
| 40 |
|
eqidd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( 2nd ` ( <. D , E >. -o.F F ) ) ) |
| 41 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> F e. ( C Func D ) ) |
| 42 |
2 39 40 41
|
prcof21a |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) = ( b o. ( 1st ` F ) ) ) |
| 43 |
|
eqidd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> A = A ) |
| 44 |
38 42 43
|
oveq123d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) ) |
| 45 |
44
|
eqcomd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) |
| 46 |
45
|
eqeq2d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) /\ b e. ( L M l ) ) -> ( a = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) <-> a = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) ) |
| 47 |
46
|
reubidva |
|- ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( X N ( l o.func F ) ) ) -> ( E! b e. ( L M l ) a = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) <-> E! b e. ( L M l ) a = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) ) |
| 48 |
34 47
|
raleqbidva |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( A. a e. ( X N ( l o.func F ) ) E! b e. ( L M l ) a = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) <-> A. a e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) E! b e. ( L M l ) a = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) ) |
| 49 |
48
|
ralbidva |
|- ( ph -> ( A. l e. ( D Func E ) A. a e. ( X N ( l o.func F ) ) E! b e. ( L M l ) a = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) <-> A. l e. ( D Func E ) A. a e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) E! b e. ( L M l ) a = ( ( ( L ( 2nd ` ( <. D , E >. -o.F F ) ) l ) ` b ) ( <. X , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) A ) ) ) |
| 50 |
24 29 49
|
3bitr4d |
|- ( ph -> ( L ( F ( <. C , D >. Lan E ) X ) A <-> A. l e. ( D Func E ) A. a e. ( X N ( l o.func F ) ) E! b e. ( L M l ) a = ( ( b o. ( 1st ` F ) ) ( <. X , ( L o.func F ) >. .xb ( l o.func F ) ) A ) ) ) |