| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanup.s |
⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) |
| 2 |
|
lanup.m |
⊢ 𝑀 = ( 𝐷 Nat 𝐸 ) |
| 3 |
|
lanup.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐸 ) |
| 4 |
|
lanup.x |
⊢ ∙ = ( comp ‘ 𝑆 ) |
| 5 |
|
lanup.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
lanup.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 |
|
lanup.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝑁 ( 𝐿 ∘func 𝐹 ) ) ) |
| 8 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 9 |
8
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 10 |
1
|
fucbas |
⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ 𝑆 ) |
| 11 |
8 2
|
fuchom |
⊢ 𝑀 = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 12 |
1 3
|
fuchom |
⊢ 𝑁 = ( Hom ‘ 𝑆 ) |
| 13 |
3
|
natrcl |
⊢ ( 𝐴 ∈ ( 𝑋 𝑁 ( 𝐿 ∘func 𝐹 ) ) → ( 𝑋 ∈ ( 𝐶 Func 𝐸 ) ∧ ( 𝐿 ∘func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 14 |
7 13
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 Func 𝐸 ) ∧ ( 𝐿 ∘func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 16 |
15
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝑋 ) ) |
| 17 |
16
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 18 |
8 17 1 5
|
prcoffunca |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐸 ) Func 𝑆 ) ) |
| 19 |
18
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ( ( 𝐷 FuncCat 𝐸 ) Func 𝑆 ) ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 20 |
|
eqidd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 21 |
6 20
|
prcof1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿 ∘func 𝐹 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) ) = ( 𝑋 𝑁 ( 𝐿 ∘func 𝐹 ) ) ) |
| 23 |
7 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) ) ) |
| 24 |
9 10 11 12 4 15 19 6 23
|
isup |
⊢ ( 𝜑 → ( 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) 𝐴 ↔ ∀ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ∀ 𝑎 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) |
| 26 |
8 1 5 15 25
|
lanval |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) = ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) ) |
| 27 |
26
|
breqd |
⊢ ( 𝜑 → ( 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) 𝐴 ↔ 𝐿 ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) 𝐴 ) ) |
| 28 |
18
|
up1st2ndb |
⊢ ( 𝜑 → ( 𝐿 ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) 𝐴 ↔ 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) 𝐴 ) ) |
| 29 |
27 28
|
bitrd |
⊢ ( 𝜑 → ( 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) 𝐴 ↔ 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( 𝐷 FuncCat 𝐸 ) UP 𝑆 ) 𝑋 ) 𝐴 ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) |
| 31 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 32 |
30 31
|
prcof1 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) = ( 𝑙 ∘func 𝐹 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → ( 𝑙 ∘func 𝐹 ) = ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) = ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) ) |
| 35 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿 ∘func 𝐹 ) ) |
| 36 |
35
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 = 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ) |
| 37 |
32
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) = ( 𝑙 ∘func 𝐹 ) ) |
| 38 |
36 37
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) = ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) |
| 40 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 41 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 42 |
2 39 40 41
|
prcof21a |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) = ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ) |
| 43 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → 𝐴 = 𝐴 ) |
| 44 |
38 42 43
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ) |
| 45 |
44
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) ∧ 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) ) → ( 𝑎 = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ↔ 𝑎 = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) ) |
| 47 |
46
|
reubidva |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) ∧ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ) → ( ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ↔ ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) ) |
| 48 |
34 47
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ) → ( ∀ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ↔ ∀ 𝑎 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) ) |
| 49 |
48
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ∀ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ↔ ∀ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ∀ 𝑎 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( ( 𝐿 ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 𝑙 ) ‘ 𝑏 ) ( 〈 𝑋 , ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) 〉 ∙ ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝑙 ) ) 𝐴 ) ) ) |
| 50 |
24 29 49
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) 𝐴 ↔ ∀ 𝑙 ∈ ( 𝐷 Func 𝐸 ) ∀ 𝑎 ∈ ( 𝑋 𝑁 ( 𝑙 ∘func 𝐹 ) ) ∃! 𝑏 ∈ ( 𝐿 𝑀 𝑙 ) 𝑎 = ( ( 𝑏 ∘ ( 1st ‘ 𝐹 ) ) ( 〈 𝑋 , ( 𝐿 ∘func 𝐹 ) 〉 ∙ ( 𝑙 ∘func 𝐹 ) ) 𝐴 ) ) ) |