| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanup.s |
|- S = ( C FuncCat E ) |
| 2 |
|
lanup.m |
|- M = ( D Nat E ) |
| 3 |
|
lanup.n |
|- N = ( C Nat E ) |
| 4 |
|
lanup.x |
|- .xb = ( comp ` S ) |
| 5 |
|
lanup.f |
|- ( ph -> F e. ( C Func D ) ) |
| 6 |
|
lanup.l |
|- ( ph -> L e. ( D Func E ) ) |
| 7 |
|
ranup.a |
|- ( ph -> A e. ( ( L o.func F ) N X ) ) |
| 8 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 9 |
8
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 10 |
1
|
fucbas |
|- ( C Func E ) = ( Base ` S ) |
| 11 |
8 2
|
fuchom |
|- M = ( Hom ` ( D FuncCat E ) ) |
| 12 |
1 3
|
fuchom |
|- N = ( Hom ` S ) |
| 13 |
3
|
natrcl |
|- ( A e. ( ( L o.func F ) N X ) -> ( ( L o.func F ) e. ( C Func E ) /\ X e. ( C Func E ) ) ) |
| 14 |
7 13
|
syl |
|- ( ph -> ( ( L o.func F ) e. ( C Func E ) /\ X e. ( C Func E ) ) ) |
| 15 |
14
|
simprd |
|- ( ph -> X e. ( C Func E ) ) |
| 16 |
15
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func E ) ( 2nd ` X ) ) |
| 17 |
16
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 18 |
|
opex |
|- <. D , E >. e. _V |
| 19 |
18
|
a1i |
|- ( ph -> <. D , E >. e. _V ) |
| 20 |
5 19
|
prcofelvv |
|- ( ph -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) |
| 21 |
|
1st2nd2 |
|- ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) |
| 23 |
8 17 1 5 22
|
prcoffunca2 |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) ( ( D FuncCat E ) Func S ) ( 2nd ` ( <. D , E >. -o.F F ) ) ) |
| 24 |
|
eqidd |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 25 |
6 24
|
prcof1 |
|- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 26 |
25
|
oveq1d |
|- ( ph -> ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) = ( ( L o.func F ) N X ) ) |
| 27 |
7 26
|
eleqtrrd |
|- ( ph -> A e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) N X ) ) |
| 28 |
|
eqid |
|- ( oppCat ` ( D FuncCat E ) ) = ( oppCat ` ( D FuncCat E ) ) |
| 29 |
|
eqid |
|- ( oppCat ` S ) = ( oppCat ` S ) |
| 30 |
9 10 11 12 4 15 23 6 27 28 29
|
oppcup |
|- ( ph -> ( L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` S ) ) X ) A <-> A. l e. ( D Func E ) A. a e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) N X ) E! b e. ( l M L ) a = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) ) |
| 31 |
1
|
fveq2i |
|- ( oppCat ` S ) = ( oppCat ` ( C FuncCat E ) ) |
| 32 |
28 31 22 5
|
ranval2 |
|- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` S ) ) X ) ) |
| 33 |
32
|
breqd |
|- ( ph -> ( L ( F ( <. C , D >. Ran E ) X ) A <-> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` S ) ) X ) A ) ) |
| 34 |
|
simpr |
|- ( ( ph /\ l e. ( D Func E ) ) -> l e. ( D Func E ) ) |
| 35 |
|
eqidd |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 36 |
34 35
|
prcof1 |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) = ( l o.func F ) ) |
| 37 |
36
|
eqcomd |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( l o.func F ) = ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) ) |
| 38 |
37
|
oveq1d |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( ( l o.func F ) N X ) = ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) N X ) ) |
| 39 |
36
|
ad2antrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) = ( l o.func F ) ) |
| 40 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 41 |
39 40
|
opeq12d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. = <. ( l o.func F ) , ( L o.func F ) >. ) |
| 42 |
41
|
oveq1d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) = ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ) |
| 43 |
|
eqidd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> A = A ) |
| 44 |
|
simpr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> b e. ( l M L ) ) |
| 45 |
|
eqidd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( 2nd ` ( <. D , E >. -o.F F ) ) ) |
| 46 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> F e. ( C Func D ) ) |
| 47 |
2 44 45 46
|
prcof21a |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) = ( b o. ( 1st ` F ) ) ) |
| 48 |
42 43 47
|
oveq123d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) ) |
| 49 |
48
|
eqcomd |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) |
| 50 |
49
|
eqeq2d |
|- ( ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) /\ b e. ( l M L ) ) -> ( a = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) <-> a = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) ) |
| 51 |
50
|
reubidva |
|- ( ( ( ph /\ l e. ( D Func E ) ) /\ a e. ( ( l o.func F ) N X ) ) -> ( E! b e. ( l M L ) a = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) <-> E! b e. ( l M L ) a = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) ) |
| 52 |
38 51
|
raleqbidva |
|- ( ( ph /\ l e. ( D Func E ) ) -> ( A. a e. ( ( l o.func F ) N X ) E! b e. ( l M L ) a = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) <-> A. a e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) N X ) E! b e. ( l M L ) a = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) ) |
| 53 |
52
|
ralbidva |
|- ( ph -> ( A. l e. ( D Func E ) A. a e. ( ( l o.func F ) N X ) E! b e. ( l M L ) a = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) <-> A. l e. ( D Func E ) A. a e. ( ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) N X ) E! b e. ( l M L ) a = ( A ( <. ( ( 1st ` ( <. D , E >. -o.F F ) ) ` l ) , ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) >. .xb X ) ( ( l ( 2nd ` ( <. D , E >. -o.F F ) ) L ) ` b ) ) ) ) |
| 54 |
30 33 53
|
3bitr4d |
|- ( ph -> ( L ( F ( <. C , D >. Ran E ) X ) A <-> A. l e. ( D Func E ) A. a e. ( ( l o.func F ) N X ) E! b e. ( l M L ) a = ( A ( <. ( l o.func F ) , ( L o.func F ) >. .xb X ) ( b o. ( 1st ` F ) ) ) ) ) |