Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ranrcl2.l | ⊢ ( 𝜑 → 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) 𝐴 ) | |
| Assertion | ranrcl3 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ranrcl2.l | ⊢ ( 𝜑 → 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) 𝐴 ) | |
| 2 | df-br | ⊢ ( 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) 𝐴 ↔ 〈 𝐿 , 𝐴 〉 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → 〈 𝐿 , 𝐴 〉 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) ) |
| 4 | ranrcl | ⊢ ( 〈 𝐿 , 𝐴 〉 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 6 | 5 | simprd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |