Metamath Proof Explorer


Theorem rblem2

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem2 ¬χφχφψ

Proof

Step Hyp Ref Expression
1 rb-ax2 ¬ψφφψ
2 rb-ax3 ¬φψφ
3 1 2 rbsyl ¬φφψ
4 rb-ax1 ¬¬φφψ¬χφχφψ
5 3 4 anmp ¬χφχφψ