Metamath Proof Explorer


Theorem rbsyl

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rbsyl.1 ¬ ψ χ
rbsyl.2 φ ψ
Assertion rbsyl φ χ

Proof

Step Hyp Ref Expression
1 rbsyl.1 ¬ ψ χ
2 rbsyl.2 φ ψ
3 rb-ax1 ¬ ¬ ψ χ ¬ φ ψ φ χ
4 1 3 anmp ¬ φ ψ φ χ
5 2 4 anmp φ χ