Metamath Proof Explorer


Theorem rbsyl

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rbsyl.1
|- ( -. ps \/ ch )
rbsyl.2
|- ( ph \/ ps )
Assertion rbsyl
|- ( ph \/ ch )

Proof

Step Hyp Ref Expression
1 rbsyl.1
 |-  ( -. ps \/ ch )
2 rbsyl.2
 |-  ( ph \/ ps )
3 rb-ax1
 |-  ( -. ( -. ps \/ ch ) \/ ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) )
4 1 3 anmp
 |-  ( -. ( ph \/ ps ) \/ ( ph \/ ch ) )
5 2 4 anmp
 |-  ( ph \/ ch )