Metamath Proof Explorer


Theorem rbsyl

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rbsyl.1 ( ¬ 𝜓𝜒 )
rbsyl.2 ( 𝜑𝜓 )
Assertion rbsyl ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 rbsyl.1 ( ¬ 𝜓𝜒 )
2 rbsyl.2 ( 𝜑𝜓 )
3 rb-ax1 ( ¬ ( ¬ 𝜓𝜒 ) ∨ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )
4 1 3 anmp ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) )
5 2 4 anmp ( 𝜑𝜒 )