Metamath Proof Explorer


Theorem rblem1

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rblem1.1 ( ¬ 𝜑𝜓 )
rblem1.2 ( ¬ 𝜒𝜃 )
Assertion rblem1 ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 rblem1.1 ( ¬ 𝜑𝜓 )
2 rblem1.2 ( ¬ 𝜒𝜃 )
3 rb-ax1 ( ¬ ( ¬ 𝜒𝜃 ) ∨ ( ¬ ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) ) )
4 2 3 anmp ( ¬ ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) )
5 rb-ax2 ( ¬ ( 𝜒𝜓 ) ∨ ( 𝜓𝜒 ) )
6 rb-ax1 ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜒𝜓 ) ) )
7 1 6 anmp ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜒𝜓 ) )
8 rb-ax2 ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜒𝜑 ) )
9 7 8 rbsyl ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜒𝜓 ) )
10 5 9 rbsyl ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) )
11 4 10 rbsyl ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜓𝜃 ) )