Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rblem1.1 | ⊢ ( ¬ 𝜑 ∨ 𝜓 ) | |
rblem1.2 | ⊢ ( ¬ 𝜒 ∨ 𝜃 ) | ||
Assertion | rblem1 | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rblem1.1 | ⊢ ( ¬ 𝜑 ∨ 𝜓 ) | |
2 | rblem1.2 | ⊢ ( ¬ 𝜒 ∨ 𝜃 ) | |
3 | rb-ax1 | ⊢ ( ¬ ( ¬ 𝜒 ∨ 𝜃 ) ∨ ( ¬ ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) ) | |
4 | 2 3 | anmp | ⊢ ( ¬ ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) |
5 | rb-ax2 | ⊢ ( ¬ ( 𝜒 ∨ 𝜓 ) ∨ ( 𝜓 ∨ 𝜒 ) ) | |
6 | rb-ax1 | ⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( 𝜒 ∨ 𝜓 ) ) ) | |
7 | 1 6 | anmp | ⊢ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( 𝜒 ∨ 𝜓 ) ) |
8 | rb-ax2 | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜒 ∨ 𝜑 ) ) | |
9 | 7 8 | rbsyl | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜒 ∨ 𝜓 ) ) |
10 | 5 9 | rbsyl | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜒 ) ) |
11 | 4 10 | rbsyl | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) |