Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Other axiomatizations related to classical propositional calculus
Derive the Lukasiewicz axioms from the Russell-Bernays Axioms
rblem1
Metamath Proof Explorer
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'.
(Contributed by Anthony Hart , 18-Aug-2011)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
rblem1.1
⊢ ¬ φ ∨ ψ
rblem1.2
⊢ ¬ χ ∨ θ
Assertion
rblem1
⊢ ¬ φ ∨ χ ∨ ψ ∨ θ
Proof
Step
Hyp
Ref
Expression
1
rblem1.1
⊢ ¬ φ ∨ ψ
2
rblem1.2
⊢ ¬ χ ∨ θ
3
rb-ax1
⊢ ¬ ¬ χ ∨ θ ∨ ¬ ψ ∨ χ ∨ ψ ∨ θ
4
2 3
anmp
⊢ ¬ ψ ∨ χ ∨ ψ ∨ θ
5
rb-ax2
⊢ ¬ χ ∨ ψ ∨ ψ ∨ χ
6
rb-ax1
⊢ ¬ ¬ φ ∨ ψ ∨ ¬ χ ∨ φ ∨ χ ∨ ψ
7
1 6
anmp
⊢ ¬ χ ∨ φ ∨ χ ∨ ψ
8
rb-ax2
⊢ ¬ φ ∨ χ ∨ χ ∨ φ
9
7 8
rbsyl
⊢ ¬ φ ∨ χ ∨ χ ∨ ψ
10
5 9
rbsyl
⊢ ¬ φ ∨ χ ∨ ψ ∨ χ
11
4 10
rbsyl
⊢ ¬ φ ∨ χ ∨ ψ ∨ θ