Metamath Proof Explorer


Theorem rblem1

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rblem1.1 ¬ φ ψ
rblem1.2 ¬ χ θ
Assertion rblem1 ¬ φ χ ψ θ

Proof

Step Hyp Ref Expression
1 rblem1.1 ¬ φ ψ
2 rblem1.2 ¬ χ θ
3 rb-ax1 ¬ ¬ χ θ ¬ ψ χ ψ θ
4 2 3 anmp ¬ ψ χ ψ θ
5 rb-ax2 ¬ χ ψ ψ χ
6 rb-ax1 ¬ ¬ φ ψ ¬ χ φ χ ψ
7 1 6 anmp ¬ χ φ χ ψ
8 rb-ax2 ¬ φ χ χ φ
9 7 8 rbsyl ¬ φ χ χ ψ
10 5 9 rbsyl ¬ φ χ ψ χ
11 4 10 rbsyl ¬ φ χ ψ θ