Metamath Proof Explorer


Theorem rblem1

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rblem1.1
|- ( -. ph \/ ps )
rblem1.2
|- ( -. ch \/ th )
Assertion rblem1
|- ( -. ( ph \/ ch ) \/ ( ps \/ th ) )

Proof

Step Hyp Ref Expression
1 rblem1.1
 |-  ( -. ph \/ ps )
2 rblem1.2
 |-  ( -. ch \/ th )
3 rb-ax1
 |-  ( -. ( -. ch \/ th ) \/ ( -. ( ps \/ ch ) \/ ( ps \/ th ) ) )
4 2 3 anmp
 |-  ( -. ( ps \/ ch ) \/ ( ps \/ th ) )
5 rb-ax2
 |-  ( -. ( ch \/ ps ) \/ ( ps \/ ch ) )
6 rb-ax1
 |-  ( -. ( -. ph \/ ps ) \/ ( -. ( ch \/ ph ) \/ ( ch \/ ps ) ) )
7 1 6 anmp
 |-  ( -. ( ch \/ ph ) \/ ( ch \/ ps ) )
8 rb-ax2
 |-  ( -. ( ph \/ ch ) \/ ( ch \/ ph ) )
9 7 8 rbsyl
 |-  ( -. ( ph \/ ch ) \/ ( ch \/ ps ) )
10 5 9 rbsyl
 |-  ( -. ( ph \/ ch ) \/ ( ps \/ ch ) )
11 4 10 rbsyl
 |-  ( -. ( ph \/ ch ) \/ ( ps \/ th ) )