Step |
Hyp |
Ref |
Expression |
1 |
|
rblem1.1 |
|- ( -. ph \/ ps ) |
2 |
|
rblem1.2 |
|- ( -. ch \/ th ) |
3 |
|
rb-ax1 |
|- ( -. ( -. ch \/ th ) \/ ( -. ( ps \/ ch ) \/ ( ps \/ th ) ) ) |
4 |
2 3
|
anmp |
|- ( -. ( ps \/ ch ) \/ ( ps \/ th ) ) |
5 |
|
rb-ax2 |
|- ( -. ( ch \/ ps ) \/ ( ps \/ ch ) ) |
6 |
|
rb-ax1 |
|- ( -. ( -. ph \/ ps ) \/ ( -. ( ch \/ ph ) \/ ( ch \/ ps ) ) ) |
7 |
1 6
|
anmp |
|- ( -. ( ch \/ ph ) \/ ( ch \/ ps ) ) |
8 |
|
rb-ax2 |
|- ( -. ( ph \/ ch ) \/ ( ch \/ ph ) ) |
9 |
7 8
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ch \/ ps ) ) |
10 |
5 9
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ps \/ ch ) ) |
11 |
4 10
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ps \/ th ) ) |