| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rblem1.1 |
|- ( -. ph \/ ps ) |
| 2 |
|
rblem1.2 |
|- ( -. ch \/ th ) |
| 3 |
|
rb-ax1 |
|- ( -. ( -. ch \/ th ) \/ ( -. ( ps \/ ch ) \/ ( ps \/ th ) ) ) |
| 4 |
2 3
|
anmp |
|- ( -. ( ps \/ ch ) \/ ( ps \/ th ) ) |
| 5 |
|
rb-ax2 |
|- ( -. ( ch \/ ps ) \/ ( ps \/ ch ) ) |
| 6 |
|
rb-ax1 |
|- ( -. ( -. ph \/ ps ) \/ ( -. ( ch \/ ph ) \/ ( ch \/ ps ) ) ) |
| 7 |
1 6
|
anmp |
|- ( -. ( ch \/ ph ) \/ ( ch \/ ps ) ) |
| 8 |
|
rb-ax2 |
|- ( -. ( ph \/ ch ) \/ ( ch \/ ph ) ) |
| 9 |
7 8
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ch \/ ps ) ) |
| 10 |
5 9
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ps \/ ch ) ) |
| 11 |
4 10
|
rbsyl |
|- ( -. ( ph \/ ch ) \/ ( ps \/ th ) ) |